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ABSTRACT

The effect of in-plane boundary conditions on the buckling loads of

simply supported ring-stiffed cylindrical shells is studied, As in che

case of unstiffened shells, the "weak" in-plane boundary conditions SS1

and SS2 yield here critica] loads about one half of the "classical"

loads. It was observed that the SS1 critical loads are identical with

the SS2 loads and the SS4 loads are almost the same as the "classical"

SS3 loads.

The combined effect of stiffener parameters and in-plane boundary

conditions is studied. For internally stiffened shells the influence

of in-plane boundary conditions is found to diminish with increasing

values of stiffener eccentricity and area, No such effect is observed

for externally stiffened shells. The buckling modes are also studied

and found that they are dependent upon shell length (or Z) and upon

stiffener location and parameters,
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LIST OF SYMBOLS

A, B - coefficients of additional displacements - Eqs. (9)

An, Bn, Cn  - coefficients of displacements - Eqs. (6)
Ajn , Bjn - coefficients of additional displacements - Eqs. (13)

AIn*... A4n - coefficients of additional displacements - Eqs. (14)

A(n,m),B(n,m),D(n,m) - defined by Eqs. (23)

(Aol)Ax(Ao2)Ax - coefficients of axisymmetric displacement - Eqs.(25)

A2  - cross sectional area of ring

a - distance between rings (see Fig. 1)

an, bn - defined by Eqs. (7)

D - Eh3/12(l-v 2)

Don, D I, D2n - defined by Eqs. (7)

E - moduli of elasticity

e e2  - distance between centroid of stiffener cross-section

and middle surface of shell, positive when inside (see

Fig. I)

C - shear moduli

h - thickness of shell

122 - moment of inertia of ring cross-section about its

centroidal axis

I- moment of inertia of ring cross-section about the

middle surface of the shell.

I tz- torsion constant of ring cross-section
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k + (1 2)

L - length of shell between bulkheads

I - (L/2)

M,5M ,M , M~x - moment resultants acting on element - Eqs. (2)

a - integer

Nx, N N x - membrane forces resultants acting on element

n - integer, also number of half axial waves

P - axial load

Q(n,t) - defined by Eqs. (23)

R - radius of shell

R(m) - defined by Eqs. (23)

S(m) - defined by Eqs. (23)

T(n) - defined by Eqs. (23)

t - number of circumferential waves

U(nt) - uefined by Eqs. (23)

u v w - displacements (see Fig. 1)

U, V, w - non-dimensional displacements ( u u /R; v /R; w /R

respectively)

Uo(x), VO(), Wo(x) - additional displacements - Eqs. (6)

(Uo)n,(Vo) n  - displacements defined by Eqs. (9)

x , y z - coordinates (See Fig. 1)

x, y, z - non-dimensional coordinates (- x*/R; y /R; z /R) 7

Z - (1-v2 ) 1/2 (L/R) 2 (R/h)
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a - exponcnts - Eqs. (9)

a . .. .. 4  - roots of characteristic equation - defined by Eqs. (12)

- TrR/L

- Kronecker delta

42 - (E2A2e 2 R/aD)

no2 - (E21o2/aD)

nt2 - (G2 It2/aD)

Si - coefficients defined by Eq. (14)

A - (PR/wD)

xp - (R3/D)p

U2 - (1-v ) (E2A2/Eah)

X2 - (1-"2 )(E2A202/EahR)

Subscripts following a coma indicate differentiation,
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I. INTRODUCTION

The influence of the in-plane boundary conditions on the buckling

load of unstiffened cylindrical shells under axial compression or

longitudinal shear has been the subject of many studies [1 - 14]. For

simply supported end conditions, the most significant result obtained was

that the zero shear stress boundary conditions, SSl (Nx M NX# = O) and

SS2 (u = N 0), reduce the critical load to one half of the "classical"

load - that obtained for the SS3 (v = N = 0) boundary conditions, whilex

for the SS4 (u = v = 0) boundary conditions cr~tical loads equal to the

"Classical" ones were obtained, For unstiffened conical shells the effect

was studied in (15], [16] and [17].

The influence of the in-plane end constraints on the buckling under

lateral and hydrostatic pressure of unstiffened cylindrical shells was

investigated in (18] and [19]. The effect in the case of free vibrations

was also studied in [20] and [21]. The effect of prebuckling deformations

on the buckling load of unstiffened shells was shown by different investigators

(9, 20, 23] to be small except for very short shells. For stiffened shells

this effect was found to be even smaller [24] and [25].

For stiffened-cylindrical shells the effect of the in-plane boundary

conditions on the buckling load was studied in Refs. [26] and [27]. Axi-

symmetric buckling modes were not examined in these studies. Since, however,
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earlier studies (28] showed that in the case of externally ring-stiffened

cylindrical shells under axial compression these modes are the critical

buckling modes, they should also be considered.

In the present report a different arproach is employed to study the

influence of the in-plane boundary corditions on the buckling under axial

conpression and hydrostatic pressure of simply supported ring-stiffened

shells. The displacement method employed for conical shells in (29] and

[IS] and for cylindrical shells in [14] (which is an extension of that

used earlier for classical boundary conditions [30])is applied. In the

analysis, a solution is assumed for the w displacement, which solves the

first two equilibrium equations exactly. The solution yields four constants

which are determined by compliance with the appropriate boundary conditions

(SSi; 2; 5 aiid 4 ) Then the third equation is solved by a standard

Galerkin procedure. Axisymmetric buckling modes are included and an

extensive parametric study is carried out,

It may be noted that the stiffening is assumed to bA closely spaced

and hence the stiffeners are taken as "smeared" or "distributed" over the

entire shell, which implies that discreteness effects - usually negligible

[31] and [32] - are not considered. The effects of eccentricity of lo4ding

are also not included in the present study.
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2. EQUATIONS AND BOUNDARY CONDITIONS

The analysis is based on the stability equation of [30] for buckling

under combined exial compression and hydrostatic pressure. For ring-

stiffened cylindrical shells these equations become:

2 + -wV u] - 0 (la)

Eh/(l-v2 )[u x + (2) x)w 2 ]O(lb)

(Y *+ (l+u2)v,, 2. Crvx lP) gXzw',,,]Cb

"(D/R)(; 2 (2w,,, "  €) + w + (2+nt2)W, + (+n

+1 h 2[(l+ 2)w-v ) - VUx] 4 A (- ) 4

w

+ w0 (1c)

and the forces and moments acting on an element are given by:

Nx  a Eh/(l-v2 ) [u x + -)(v -w]

N -• Eh/(l-v2 )[(l+u2(v* - W) 4+ ox - X2W,]

N x+ N#x a Eh/2(1"v)[u + V x]

(2)

a -(D/R)( w xx  + vw, 1#

Kx 4 a (D/R)[w,,(1 + no2) 4 Vw,= -2(v # - W)]

Mx4 x (D/R)(1 - ,)Wx#

M#x - -(D/R)[(1 - v) + rt2]w x#
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In the case of simply supported shells the usual out of plane

boundary conditions to be satisfied at the edges are:

W Mx  a 0 at x - - (/R) or y a 0

x - (/) or y - (w/)

The displacements u, v and w, which are the solutions of Eqs. (1), must

also satisfy the appropriate in-plane boundary conditions, one of the

following 4 sets,

SSl; N 2 N a 0

SS2: U = N • 0
x0M0 at x- -(L/R) or y a 0

"Classical"SS3; v - N a 0
x x- (/R) or ( Ci/8)

SS4; u U v a 0

(4)

Since w a 0 at the edges also w = 0 at the boundaries and

the condition for Mx = 0 at the boundaries can be replaced by

w a w 0 at x --(/R) orya0 (5)W'xx()

x a (/R) or y - (w/o)

On the basis of [14], (281 and [30] the displacements for the solution

of Eqs. (1) are chosen as



rS
u = [uo(X) , + A cos(nBy)jsin (to)

n-1

v [v ox) + ; Bnsin(nBy)]cos (to) (6)
n-1

w- [w o(x) + C nsin(nBy)]sin (to)
n-i

The Fourier series terms of the displacements are bolutions of Eqs.

(1), as was shown in [28] and [30], and their substitution in Eqs. (1)

yield the coefficients An  and Bn  in terms of Cn  as in Eq. (16) of

(30].
An  Din

an V- U--
n on

Bn  D2n
bbn  - Cn D on

(7)

where

D n x ( )x2 nt 4 + (1 + P2)(=ji:)nBt2  vC;) n -

U ( S 22 1- 3

(Y ) + X2n - (le. (1 + 2) 2 )2t +

v +l V2)1Bt

Don (- i2 )t 4 * ((1 + U2 ) - v] n2 12 t2 + (Z;.Y)n 4 B4

The additional displacement w0 (x) is arbitrarily assumed to be equal

to zero since the Fourier series terms fulfil the boundary conditions Eqs.

(S). Substitution of w (x) a 0 in the first two stability equations

Eqs. (ia) and (lb) yields two homogeneous differential equations for the

additional displacements uo and v0
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Uo,xx €€Y 01 + V') o,x#

(8)
Fl+V, 1- 0

(: o,x# +C1 2)Vo,*4 + )o,xx

The solution of Eqs. (8) can be written as

CUdn - M ayx sin t()

(9)
(V o.In- Be' x ccs~t+)

Substitution of Eqs. (8) into (9) yields the following homogeneous algebraic

equation

2 1-v 2 l+v

[c at ac(-.'-)t - () [A2jt 0

and non vanishing values for A and B are obtained if the determinant of

the.coefficients of A and B is vanishing. Thus the characteristic

equation for a is obtained

l-v 4 ~2 2-4 2, 0 (11)€ ) 1. 21C+02) .v) a + t C (1 4 2)C,. :

and the roots of this equation are

~ ~t[(k -.v) Ck - l)(k - v2), 11/2a I a 2 a Ck--u) .

.( 12)

a (k - v) -(k_- l)(k_- 2)3 4 (-V)
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whevj k + ( U i 2)

It can be showa that a1 and a2  are always real, because (k-l)(k-v 2)> 0.

Similarl) a 2  and a4 are always real for all practical applications because

(k - v) {-1)(k - v") for a lirge range of k.

With the above calculated values of a, the additional displacements u0

and v0 become

(u4 0 1x(U) = Cn sin(tf) E Ajnz

nj Jul

(13)
4 L.X

(Vo)n- Cn cos(t#) E BjnL
jul

From Eqs. (10) the -eiation between Aj and B.n is given by

B jn 6 J n
(14)

2a. - (1 - v)t2

where e =

and 81 = 2 83 = 84

Hence the complete displacements can be written as

u - sin(t#) 7 Cn [ancos(noy)+A lnsh(alx)+A2nsh(a 3 x)+A3nch(alx)+A4nch(a 3x)]
nal

v x cos(t#) E C n b nsin(n~y)+el1AIn Ch(aIx1+9esA2n Ch(ax)+elA 3n sh(al1x)+
nal

e 3A4nsh (a 3 x)]

w a s..;(t*) E C sin(noy) (15)
nal



-8-

These equations include four constants of integratiov Ajn which will

be determined from the appropriate in-plane boundary conditions.
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3. COMPLIANCE WITH IN-PLANE BODARY CONDITIONS

The values of the constants A. are determined by enforcing the four

sets of boundary conditions listed in (4).

For example, in case SS4 the requirement

u = v = 0 at x =-(t/R) or y a 0

x = (t/R) or y-. Cw/a)

yields

sh(alt/R) sh(a 3 1/R) -ch(aIL/R) - ch(a 3 t/R) Aln an

sh(a IL/R) sh(a 3L/R) ch(cayl,'R) ch(al/R) A2ni -1) n

e1ch(CaIt/R) 3ch(a 3 t/R) -0 1sh(alt/R) -03sh(a3L/R)! A 3n n

Olch (a t /R) 03ch(a 3l/R) 6lSh(alt/R) 03sh(a 3tL/ A4 J 0 J

(16)

This matrix equation can be divided into two matrix equations one

yielding symmetric modes of buckling - n al, 3,5... and one antisymmetric

modes - n a 2,4,6...

For symmetric modes: n 1, 3, S...

A3n A4n a 0

sh(ciIt/R) sh(a3  L/R) 1 f A{An..

Lech a 1aL/R) 63ch(a 3L/R)j 1A2n ,J (7a)
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For antisymnetric modes: a 2, 4, 6...

A =n A2n • 0

ch (a I/R) ch( 3 L/R) 1 A3nl = a n (1)

e Sh (a1/ R) 0 3sh(a 3 t/R)J A4n 0

In case SS3

N avaO
x

In a similar manner to case SS4 , a set of 4 homogereous equations is

obtained for which only the trivial vanishing solution exists

A ln A2 n v A3n - A4 n * 0 (18)

and the "classical" solution of [28] is obtained.

In case SS 2

u N X 0

For symmetric modes: n 1, 5, 5

A3 n A4 n ' 0

rl sh( l/R) ca 3sh ( 3 /R)j A2ln} nbn} (19a)



- 11 -

antisymmetric

whereas for a eeb~c modes: n - 2,4,6...

A ln ' A2n " 0

and

Fch (a l/R) ch(a 3 /R) 1 A3n an

La e ch(aLt/R) at3ech (ot X/R) j {A~n {4Ilbn (19b)

In case SS 1

N -N. = 0

For symmetric modes: nil, 3, 5...

A3 n * A4n ' 0

and

(a - uto)ch(alt/R) (a 3 - vto3 )ch(a 3 
r/R) fAln 0

Lt + 1 e1 )sh(aI 1 /R) (t + c3 e3 )sh(G3 L/R) J 2nf an+f8bn

(20a)
antisymmetric

whereas for eeymoin c modes; n - 2,4,6...

Aln ' A2n 0 0

and - vt 1)sh(a 1 /R) (a3 . vtO3)sh( 3 /R)] {A3n 0

(t + al )ch(il/R) (t+ a3 63 )ch(a3L/R) J A4n- -tan-nolb

(20b)
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4. SOLUTION

Now every term of the displacements series Eqs. (15) is a solution

of the first two stability equations (la) and (ib).

The third equation (1c) is solved by a Galerkin procedure.

2,r CIR) ;C(w/ )
I d# f -CD/R)(C 2(2w, ,-v ,00)+w xxxx+ ( 2+nt 1)w xxO +(l+no2)w #f€
o - t/R);O

2 w W.12(R/h)1(l+u2)(w-v,, €'J xl+x(-!)+x p[C(-j= + w 0] )

.wdx - o (21)

Substitution of Eqs. (15) and performing the necessary integration

yields a system of linear homogeneous algebraic equations for the un-

knowns X and Xp which are the critical load parameters

z Cn [A(n,m) + XB(n,m) +l) D(n,m)J = 0 (22)
n
m a 1,2,3,.

where w; n x 1,3, 5... for symmetric modes of buckling and

ew- n a 2,4, 6 ... for asymmetric modes of buckling

ahd where for the syimetric modes

A~rm)• 6 Q~n,t) + ch~alI/R)R(m)Aln + ch Is~/R)S(m)An

(23a)
B(n,m) a 6 T (n) (23b)

un

D(n,m) a 6nnU (n, t) (23c)

antisymmetric
and for the modes
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A(n,m) = 6 n72/20 Q(n,t) - sh(a 1 IR)R(m) A3n - sh(a3 L/R)S(m) A4n (23d)

B(n,m) = 6n T(n) (23e)

D(n,m) 6 5U(n,t) (23f)

Q(nt), R(m), s(m), T(n), U(n,t) in Eqs. (23) are defined as follows:

Q(nt) [42t 2-12(R/h)1lC+2)]tb 12(R/h)2 [vnoan + (la 42)]-n48

S2[t2(I + no2) + (2 + t2)n28 2 - 2}

2O1man 3 2 CLR(m) t 2 ' 2 - 12(R/h) [t(i + ))

2 22 2

20 3 maw3

S (m) =- 1425 {n t3  12 (R/h)2E[t1 I +2 "V(-]

3 +7 2 5

2 2
T (n) (w (22) 1L a.

2

2 2 2 02
U(n,t) a (ii/2$)[t + __

Truncating of the displacement series at n - N yields a NxN stability

matrix Eq, (22) whose lowest eigenvalue yields the critical load for n = S.

In the calculatio'is, the circumferential number of waves (t) is treated as ,t

parameter for which the minimal critical value is found for a given n, The

sizo NxN of the matrix is determined by the convergence criterion for the

critical load,
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5. AXISYMMETRIC BUCKLING.

For this mode of buckling t = 0 and there is no dependence on v

and 0 and the equilibrium equation (1) degenerate to

(Eh/l-v ,J - vw ]=O (24a)

2 xx
-(D/R)[-wxxxx+ 12(R/h) 2(vu - w) - ,+,)(-L.) = 0 (24b)

If as before, wo = 0, the additional displacement u. becomes

u0 M (Ao0 )Ax X + (A o2)Ax  (25)

and the complete displacements are then

u ; Cn [an cos(nhy) + (Aol)A,) +(Ao 2)Ax]
n zi (26)

w a I C sin(ney)
n]

and, as before, the coefficients are determined by corpliance with the

appropriate boundary conditions.

For axisymmetric buckling the in-plane boundary conditions (4) are given

by:

In cases S.S.1 and S.S.3: Nx a 0 at x a -(/R) or y a 0

and cases S.S.2 and S.S.4: u a 0 x a (fiR) or y - (w/0) (27)

The coefficients are therefore:

For S $ 4 and SS,2

02a n  n a 1, 3, S...

Aol)Ax 
z

0 n-2, 4, 6,..
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r = 1.3.5...

(Ao2)AX

- an = 2.4.6... (28)

and for SS3 and SS1

(A od)1  (Ao2)Ax = 0 (29)

(Ao2)Ax is assumed to vanish because it represents a rigid body

translation in the axial direction and thus can be ignored:

The second stabilty equation (24b) is again solved by the Galerkin

procedure:

2w L/;''2 
' d 0f do f (D/R)[w + 12(R/h) (l+p 2 )(vu,x -W)+ 1 X+Xp ) 1w m " Oo -t/R, O ,xxxx2JWX

(30)

which yields for the symmetric modes n a 1,3,5... the set of linear algebraic

homogeneous equation

Cn ( 2 / 2 ) 6m{24(R/h)2 [an nBv (l+u2) ]+2 n484 ] )(48/m Al)Ax (R/h)2 Iv +

+ n2 2(W2/20) mn, (A+ Xp)) = 0 m - 1,3,5,.... (31)

and for the asymmetric modes - n a 2, 4,6.. another set

6 mnC( 2/20){24(R/h) 2(a n v O (.+pP + 2n4 4 . +n2s2(X+. P 0

m u 2.4.6..... n0 (32)
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6. NUMERICAL RESULTS AND DISCUSSION

In the numerical work two main stiffener configurations, differing

in their eccentricity, were studied, one with (e2/h) - t1, (A2/ah) = 0.5,

(122 /ah5  = 2 and nt2 = 3 (Table la) and the other one with (e2/h) = ,

(A2/ah) =0.5, (I22/ah3 = 2 and nt2 = 3 (Table lb). In both studies

the shell geometry was varied in the ranges 0.03 < (L/R) < 2.00 and

100 R/h < 2000. The critical loads obtained for these geometries of

shells and stiffeners are presented in Tables la and lb. These loads are

computed for the four simple support in-plane boundary conditionv SS1 to

SS4. The calculated critical loads are compared with the "classical"

bucklings loads (SS3 boundary conditions) and the results are plotted as

a function of the Batdorf parameter Z in Figs. 2a and 2b and as a

function of the nondimensionalized shell length (L/R) in Fig. 3 with (R/h)

as an additional parameter.

From Figs. 2a and 2b, as well as Fig. 3, it can be seen that the 5S1

boundary conditions yield exactly the same critical loads as the SS2

boundary conditions and that the SS4 boundary conditions yield the same

loads as the "classical" SS3 conditions. From Figs. 2a and 2b it can be

seen that in the very low range of the Batdorf parameter Z < 0,2 the

different in-plane boundary conditions do not differ the critical loads.

But from Tablesla and lb one may also observe that, though the critical

loads are identical the corresponding buckling modes are completely different.
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The SS1 and SS2 boundary conditions yield asymmetric buckling modes where-

as the SS3 and SS4 boundary conditions yield axisymmietric buckling modes.

It may be noted that for asymmetric modes the critical number of

circumferential waves is t a 2 in many cases. For such small numbers of

circumferential waves the Donnell type stability equations employed in the

analysis are inaccurate in general. However, since the critical loads are

found to increase only very slightly if t is increased from 2 to 4 or 5

(usually by less than 1), the buckling loadsi ,tsh t a 2 can here be taken

as close approximations.

With increasing values of Z up to values of Z Z 4.7 the critical loads

corresponding to SSl and SS2 boundary conditions decrease to values as low

as 35% of the "classical" critical loads for Z26 4.7. Beyond this value

of Z, the SSI and SS2 critical loads increase with Z, reaching values of

about one half of the "Classical" load for Z * 10. For Z > 10 there is a

slight increase of the SSl and SS2 critical loads with increasing Z. This

behavior differs slightly from that of unstiffened shells for which the SSl

and SS2 boundary conditions yield half the critical "classical" load in-

dependent of - (See [6], j7], [13] and [14]).

Figures 2a and 2b show clearly that the influence of the in-plane

boundary conditions depends on the eccentricity of the stiffeners. In Fig.

2a it is observed that in the case of low values of eccentricity, (e2/h) a tl

both externally or internally stiffened shells are equally affected by the

in-plane boundary conditions for values of Z larger than 10. A noticeable
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difference between external and internal stiffening appears there only in

the range 4 < Z < 10 where first external stiffening yields lower ratios of

critical loads than internal stiffening and then the effect is inverted

but of smaller magnitude.

With the larger values of eccentricity 'o2/h) = tS in Fig. 2b a notice-Ole

difference is evident between internal and external stiffening for low value of Z

(Z > 1) as well as for larger values of Z. External stiffening yields lower

ratios of SSI and SS2 to 3S3 loads for most shell geometries, exc3pt for a

small region 6 < Z < 9 where the effect is inverted. Similar conclusions can

be drawn from Fig. 3.

There is some scatter of the points representing the ratios of the

critical loads when plotted versus the shell geometry parameter Z. There

are two reasons for this scatter. First the shell geome~try parameter is

only an approximate overall parameter in the case of stiffened shells and

hence most of the scatter disappears when the ratios are plotted for the

separate geometric parameters (See Fig. 3). Secondly the critical values

occur at different circumferential curve numbers for different in-plane

boundary conditions. The necessity of integral values causes the well

known "ripples" in the curves of buckling load versus geometry parameters,

which differ for each case ai.d result in scatter when divided to give the

ratios of the buckling loads.
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In [28] it was concluded that externally ring-Etiffened cylindrical

shells should always buckle in an axisymmetric mode. The present results

(Tables la and lb) extend this conclusion to the SS 4 boundary conditions

which are also shown to yield axisymmetric modes of buckling for such shells.

In Table 2 and Fig.4 the variation of the influence of the in-plane

boundary conditions with increasing eccentricity is studied. The geometries

of the shells are given in Table 2. From Fig. 4 it can be seen that for

external stiffening the influence of in plane-boundary conditions does not

change with magnitude of the eccentricity. Fr inside stiffening, on the other

hand, the magnitude of the eccentricity affects the influence of the in-plane-

boundary conditions which is reduced with increasing eccentricity.

The variation of the influense of the in-plane boundary conditions with

increase of the rings area parameters (A2/ah) is investigated in Table 3

and Fig. 5. Geometry and dimensions of the shells studied are presented in

Table 3. From Fig. 5 it is seen that for externally stiffened shells the

magnitude of the ring-area is practically inmaterial whereas for inside stiffening

it is a major factor. The SSI and SS2 critical loads increase noticeably

with increasing values of the area parameter (A2/ah) and approach the

"classical"(SS3) critical load.

In Table 4, the effect of increasing the moment of inertia parameters

(12 2/ah
3), in relation to the influence of the in-plane boundary conditions

is stndied on some of the shells. The dimensions and geometry of the shells

examined are given in Table 4. The moment of inertia is found to have no
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effect on the critical load ratios of the "weak" boundary conditions SSl

and SS2. In Table 5 and Fig. 6 the effect of increase of moment of inertia

is also studied for a wider range of the parametel, 1 < 122/ah 3 SO, with

the same negative result, The dimensions and geometry of the shells are

listed in Table S.

The buckling modes of the w displacement (radially inwards) were

also studied (Tables la and lb), Some of the results are given in Figs.

7 to 11.

In Figs. 7a to 7d the buckling modes for "thick" shells with (R/h)=100

and low eccentricity (e2/h) = ±1 are presented , It can be seen from these

figures that short shells (Fig. 7a - Z = .954 and Fig. 7b Z = 8.59 ) yield

identical modes for all the in-plane of boundary conditions (SS1 to SS4).

Note also that the modes are identical for internal and external stiffening.

As the length of shells increases (Fig. 7c - Z = 95.4 and Fig. 7d- Z =382

the buckling modes for the SS1 and SS2 boundary conditions remain identical

and independent or stiffener location. It can be seen that these "weak"

boundary conditions are charucterized by edge buckling which is the reason

for their low critical loads. On the other hand the SS3 and SS4 boundary

corditions yield mudes that differ completely from those of SS1 and SS2 and

depend also slightly on the stiffener location. Note that for internal

stiffening the SS4 modc differs slightly from the SSa mode while for external

stiffening the modes are identical. Fig. 7d shows a more pronounced difference

between the SS3 and SS4 modes with further increase of the shell length. The
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SS3 mode now significantly differs from the SS4 mode, and internal and

external stiffeners yield different modes of buckling.

In Figs, 8a to 8d the buckling modes are given for similar shells

but with a larger ring-eccentricity- (e2/h) = 1 5. Increase in eccentricity

changes the buckling modes. The SS3 and SS4 buckling modes are now not

identical with the SSI and SS2 modes, even for short shells: Fig. 8a- Z = .954

and Fig. 8b - Z = 8.59 , For the short shell (Fig. 8a) no dependence

upon the location of stiffeners is observed for all in-plane boundary

conditions, whereas location dependence can be seen for the medium shell

of Fig. 8b. For this shell, the SS3 mode differs for internal and -xternal

stiffeners. With increase of the shell length, the modes of Figs. 8c and

8d are obtained which exhibit a behavior similar to that in Figs. 7c and

7d.

44
In Figs. 9a to 9d the buckling modes are presented for thin shells,

{R/h) = 2000, having a low value of eccentricity. The reduction of shell

thickness, or rather the inrease in Z, yields different modes for the SS1

and SS2 boundary conditions than for SS3 and SS4. Note that for the short

shell of Fig. 9a - Z = 19.1 the modes are location independent. With

increase in length of shell (Fig. 9b - Z a 477 )the SS3 modes begin to

differ from the SS4 modes, and the SS4 modes are also dependent upon the

location of stiffeners. From Figs. 9c and 9d it can be seen that with

further increase in shell length the SSI and SS2 boundary conditions yield

identical buckling modes that are location independent. Similar conclusions

apply to the SS3 and SS4 boundary conditions.
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In Figs. l0a to lOd the buckling nodes are studied for shells with

the same geometry as Figs.9a to 9d, exzept for larger eccentricity,

(e2/h) = ±5. For short shells, the results of Fig. lOa - Z = 19.1 and

Fig. lob - Z = 477 are similar to those of Fig. 9a and 9b. With a

further increase of shell length, a significant effect of the increased

eccentricity is noted for SS4 modes of internclly stiffened shells (Figs.

lOc - Z a 1910 and lOd - Z - 7630). For corresponding externally stiffened

shells no similar effect is observed.

The influence of stiffener eccentricity on the SS4 modes in the case of

long shells is studied in Figs. lla to 11c. A significant effect is only

observed for la:ge values of eccentricity (Figs. lib - Z = 8600; e2/h a S

and 11c -z a 8600;(e 2/h) x 5). From Figs. llb and lIc it can also be seen

that an increase in the moment of inertia of the stiffeners changes the

SS4 modes noticeably.

It should be pointed out that in all the "long" shells the SS1 and SS2

modes are always characterized by edge buckling, which can explain the

significant reduction in the critical loads corresponding to these boundary

conditions. These boundary conditions yield buckling modes which were almost

always one sided - inwards (positive w displacement), except for long shells

with large eccentricities as in Figs. .lb and llc,
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7. CONCLUSIONS

a. As for unstiffened shells, the critical loads of ring-stiffened

shells depend on the in-plane boundary conditions. The "weak"

SS1 and SS2 condition yield identical buckling loads which are

about one half the "classical" SS3 loads. The SS4 boundary con-

ditions yield critical loads which are practically equal to the

"classical" loads, or very slightly larger.

b. The buckling loads of very short shells - Z < 0.1 are independent

of the in-plane boundary conditions.

c. In the range of 0.1 < Z < 10 the SS1 and SS2 boundary conditions

yield critical loads which are as low as 35% of the corre3ponding

"classical" load.

d. For externally stiffened shells the influence of in-plane

boundary conditions is not affected by the stiffener geometry.

e. For internally stiffened shell, on the other hand, critical loads

for the "weak" in-plane boundary conditions SS and as2 Lncrease

with stiffener area and eccentricity. For very large stiffener

area they approach the classical SS3 critical loads, Changes in

the moment of inertia of stiffeners have a negligible effect on the

influence of in-plane boundary conditions.
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f. The buckling modes depend on the shell length (or Z) and on the

stiffeners geometry.
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